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Abstract: It is well recognized that image based real time learning in neural computation using
hyperspectral data set for target recognition is not only a complex problem to solve, but is also very time
consuming. Solution of the same using neural processing with on-chip learning in hardware has never
been attempted so far, even though such a high speed processing would be needed to perform real time
data processing. It is important that a preprocessing step be included to cater to a high degree of input
parallelism. Hence, a high-speed analog preprocessing method (developed and reported separately) that
involved hardware-based data convolving scheme in a set of 3-D packaged chips with programmable
templates, was used. Following that step, as the focus of our present paper, we have used the cascade
error projection (CEP) learning algorithm (shown to be hardware-implementable) with on-chip learning
(OCL) scheme to obtain three orders of magnitude speed-up in target recognition compared to software-
based learning schemes. Thus, it is shown, real time learning as well as data processing for target
recognition can be achieved. This paper first describes the processing details of a hyper-spectral data set
in software containing a large 356,000 data points image. The paper also describes the fabrication of a
test chip that was characterized and evaluated for comparison of its performance with the emulation results
reaching up to 96.9% correct target recognition.

learning in hardware has never been
L Introduction: attempted so far.

Use of hyperspectral data for recognition

of objects is known to offer advantages
because of the differing reflective/
absorptive properties of the target
materials involved over a range of
frequencies in the visible and infrared
regions. This expanse of wavelengths,
however, brings about the complexity of
massive amounts of radiation data to be
sorted through. Using such data,
artificial neural networks have been
trained to recognize objects of interest

[1].

At the same time, it is well recognized
that learning in neural computation using
hyperspectral data set for target
recognition is not only a very complex
problem to solve but is also a
computationally intensive, and therefore,
a time consuming process. Hence, real
time solution of the same with on-chip

By designing a suitable preprocessing
step and combining it with a novel
training scheme for the neural
computation, an architecture has been
developed that is particularly suitable for
hardware implementation and more
importantly, is capable of real time data
processing.

Even though the emphasis of this paper
is towards on-chip learning algorithm
and its hardware implementation, we
also briefly describe the preprocessing
steps of the hyperspectral data set
performed in software containing a large
(356,000 data points) image.

This preprocessing step provides a
compression of data into a manageable
set of data, which are used for learning
of the neural networks using a new



scheme. The data set is split into non-
overlapping training, cross-validation,
and testing data. The hardware
implementation details are outlined and
software and hardware results with
different precision are compared and
discussed.

IL Technical approach:

We have developed an on-chip learning
(OCL) neural network technique that is
capable of learning and adapting in real
time. To do so, we have used the
Cascade Error Projection (CEP) learning
algorithm, which has been reported
earlier [2-7]. CEP has been
demonstrated as an efficient algorithm
for hardware implementation due to its
sufficiency with lower weight resolution
and its quantization requirements. For
example, it only required 4-bit or more
weight quantization to learn 5-8 bit
parity and chaotic time series prediction
problems [2,5]. It is also faster learning
algorithm since the learning is only
conducted in the currently added hidden
unit with respective weight changes.

Further, it is easy for the network to
converge due to the cascading
architecture, which avoids guessing and
fixing a predetermined number of hidden
units as is needed for Error Back-
Propagation (EBP) learning technique.

Moreover, each added hidden unit is
only parameterized by its set of weights
that is correlated with the previous
energy level. This fact allows us to
manipulate the stepsize based on the
previous energy and to exploit the full
capability of the current set of weights
[7,8]. In addition, CEP is theoretically
proven for its convergence in
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Liapunov’s sense when a cascading
hidden unit is added [3,7,8].

We emphasize OCL architecture because
it allows us to utilize the high speed of
learning for real-time applications such
as hyperspectral data processing for
target recognition.

III.  Architecture:

The architecture of CEP with OCL is
shown in Figure 1. In this architecture,
target and input signals are fed from
outside, while output and conditioning
signals are generated inside and brought
outside. The output will provide actual
performance of the network and
conditioning signal is used to monitor
the status of learning system.

Target Output
L L A
vv $v—

. L3

1 ¥

n \.‘

u fte

¢ :...lﬂ

Figure 1: An OCL architecture is shown
where Aw* is generated and updated
on-chip. Blank squares and circles
denote weight components that are
trained and frozen, while shaded
squares and circles are undergoing
learning.



Initially, input is directly mapped to
output by set of weights in the
rectangular box. This weight set is
obtained by perceptron learning. Then, a
hidden neuron is introduced and the
input and target are fed into neural
network and Aw* is generated from
block A (a part of L), which go to update
the weights represented by shaded
squares and circles until the network
satisfies user’s criteria. If not, iteratively
hidden neurons are introduced and
weight updates obtained.

To make the algorithm hardware-
implementable, we break block L into
three blocks: A, B, and C. Block A

provides %, block B provides the

updating weight %?--éa—% for the shaded

squares, and block C calculates the
output weights for each added hidden
unit.
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where n is the number of added hidden
units, p, number of training patterns, and
m, number of output units. Further, o
denotes output index, h is an index of
hidden units, and 7 is the learning rate.
The index of weight from input to
hidden unit is denoted by ik, and X is the
input vector.

For each learning iteration, energy is
monitored and  accumulated for
evaluation of the condition of learning
system. When energy accumulation for
all input pattern is above a threshold
level, the learning is continuing on.
Otherwise, it is terminated.

IV.  On-Chip Learning:

In CEP architecture, important features
of OCL consist of independent layer
learning and  dynamical  stepsize
manipulation.

e Independent layer learning:

The current error surface that did not
meet the stopping criteria for learning as
provided by user is projected to a newly
added hidden unit for learning. This
learning is only conducted independently
within a new weight set (the previous
weight sets are frozen) (See Figure 1).
Because of independent layer learning,
the learning weight set can be set a
stepsize as a gain factor of synapse. The
manipulation of stepsize in learning
phase is shown in the previous report
that it helps to reduce weight
quantization requirement [7-8].

e Dynamical stepsize:

Based on our previous study, the
stepsize of the current energy is roughly
proportional to the previous energy level
[3,7]. Independent layer learning allows
setting a stepsize as needed to enhance
the learning capability under bit
quantization constraints.



The simulation results were shown to be
encouraging in previous studies by using
dynamical stepsize e.g., 5-8 bit parities,
chaotic time series prediction, and color
segmentation problems [2,6,9].

V. Learning with limited weight
quantization:

One of the most challenging parts for
OCL is the convergence problem. There
are several factors that can cause
learning  divergence. In case of
hardware, the two obvious reasons are
the architecture and the availability of
the weight quantization.

e Architecture: This is one of the
most crucial factors. Fixed and
predetermined architecture is a poor
choice since the learning
convergence is dependent on
training data structure, learning rate,
and initial random weight. This
architecture is a flexible quick fix,
but it is not optimal architecture
since learning is only conducted in
the sub-weight space. In the CEP
with OCL, we have adopted the
cascading architecture.

o Weight quantization: This step is
very expensive in VLSI hardware
implementation.  Increasing even
one bit in synaptic weights requires
almost double the space on silicon,
and twice the power consumption
[10]. In addition, synaptic weight
requires very large population in a
system. Further improvement in
quantization may not be possible
when synaptic weights reach to
certain bit quantization level. In our
study, we limited ourselves to 8-bit
weight quantization which had been
designed and tested [10-11].

VI.  Application:

The Airborne Visible InfraRed Imaging
Spectrometer (AVIRIS) is an optical
sensor that delivers calibrated images of
the upwelling radiance in 224 spectral
channels, or bands, with wavelengths
from 400-2500nm. AVIRIS collects
spectra sequentially by using a Whisk-
broom scan mechanism. The radiance
from an approximately 20 m” patch on
the ground is dispersed thru four grating
spectrometers to obtain a spectrum
consisting of 224 channels [12]. The
AVIRIS data is inverted to units of
spectral reflectance using a radiative
transfer model estimate of atmospheric
path radiance and reflected radiance
[12]. This data were played as
background scene, while target spectra
were obtained from ground truth
measurements. In these experiments
10% of the target data were mixed into
AVIRIS scene. The details of this work
are published elsewhere [13].

From the mixing background and target
data, the composite data is highly
redundant and noisy. Directed Principle
Component Analysis (DPCA) is used to
reduce the data dimension and to get rid
of white noise from it [13]. The original
pixel dimensions are reduced from 224
bands to 16 bands without much loss of
information.

In 365,000 data points, 2,224 data points
were selected of which each pixel
consisted of 16 elements for training.
Similarly, another 2,224 non-overlapped
data points were selected for cross-
validation which allowed examination of
the status of learning in order to avoid
over-learning problem. Finally, 17,821
data set that was again non-overlapping
with the training and cross-validating
data sets was used to test and evaluate
the system.



VII. Simulation results:

In this simulation, we have studied bit
constraints under learning neural
network. We started with floating point
machine (64-bit with double precision),
and later reduced it to 8- through 5-bit
weight quantization. The results are
shown in Table A.

Table A: H/W emulation and S/W results

Weight Training | Cross Testing
quanti- validation | results
zation

64-bit 99.9% | 99.9% 99.9%
8-bit 97.4% | 97.2% 96.9%
7-bit 94.4% | 95.1% 94.2%
6-bit 88.6% | 90.9% 87.8%
5-bit 86.0% | 87.1% 85.7%

Each hidden unit was required to
perform 1000 iterations to complete
learning for that hidden unit. Using
SPARC ULTRAZ2, it required 20 min to
learn 2,224 input patterns. To project
this learning in time consumption, each
iteration was designed to take 0.25us
and it consumed 3.36 seconds to
complete the learning. In addition,
digital computer would require more
time to train when dimensionality would
increase. On the other hand, OCL
training time is constant regardless of the
dimensionality of the problem. From
this comparison, we were able to
ascertain that about 3 order of magnitude
faster training was obtained using OCL
approach.

VIII. Conclusion:

In this paper, we demonstrate that OCL
using CEP architecture would require 7-
bit weight or more to obtain above 94%
correct recognition using sub-pixel
hyperspectral data. This learning is an
improvement of three orders of
magnitude in training time compared to
that in simulation.

Even simulation with 8-bit weight
quantization achieved 96.9%
recognition, which is a first ever.
Downloading of the simulation-derived
weights into the test chip with 7-bit
weight quantization and subsequent
hardware in the loop learning resulted in
the efficiency of target recognition of
88%. With 20% target mix, this is the
first ever hardware result for the solution
of a hyperspectral target recognition data
processing based on on-chip learning. It
is expected that with further hardware
parameter modifications, a substantial
closeness to simulated results will be
achieved.
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